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CHAPTER 1

INTRODUCTION

Many types of ocean-based structures such as marine

risers, TLP tension members, deep water pipelines and
hydrophone cables are susceptible to vortex-induced
vibration. These strumming oscillations are of great

practical importance because of their long term destructive
effects which may cause failure by fatigue. The
implementation of good design procedures that account for
strumming vibration 1is becoming more desirable as the
offshore industry moves into deeper water where substantial

steady currents are more often encountered.

The problems associated with vortex-induced vibrations
have proved to b; extremely difficult both‘theoretically and .
experimentally due to thé complex interaction between
structural motions and the vortex-shedding. The well-known
wake capture phenomenon is a typical example revealing such
a fluid-structure interaction. If one of the natural
frequencies of the structure is near the vortex shedding
frequency, lock-in can occur and the shedding frequency is
captured by, or synchronized with, the structure frequency.
The oscillatory 1lift and drag forces induced by vortex
shedding are amplified due to the coupling between

structural response and vortex shedding. The complexities
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involved in a complete formulation of the flow-induced

vibration problem preclude a complete solution at this time.

Several semi-empirical mathematical models formulated
with a van der Pol type oscillator have been proposed [9] in

an attempt to simulate and/or predict +the vortex-induce

o}

vibrations in the <cross-flow direction. Due to the
empirical nature of these models, their performance is not
altogether convincing. However, these models were able to
produce results which are qualitatively similar +to +those
obtained experimentally. Hartlen and Currie [9], Griffin
[11] and Iwan and Blevins [13] covered the field in some

detail.

Many of the key developments of the past decade have
resulted from experimental investigations of flow-induced
oscillations. Considerable experimental work has been
conducted to treat various aspects of the problem under
controlled laboratory conditions. Sarpkaya [24], Griffin

[12] and King [18] have given comprehensive reviews.

The emphasis has been placed mostly on the study of
vibration characteristics in the cross-flow direction. The
behavior in the in-line direction is much 1less understood.
One peculiar experimental observation 1in the in-line

/

direction is that the in-line response frequencies do not
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always correspond to the structure natural fregquencies,

D

instead they are equal to the double or sum of some oI =th

cross-flow response freguencies for ©both 1leock-in an

2

non-lock-in cases. No attempt has been made to investigat

[t

the relationship Dbetween cross-flow and in-line responses,
or equivalently, 1ift and drag forces. Even the answer 1O
the preliminary question of whether they are correlated or
independent is still not available. 1In the design of, for
example, a. marine riser, the correlation Dbetween <the
response in these two perpeﬁdicular directions plays an
important role in fatigue life estimation, because of its

relation to the stress statistics of the structure.

The purpose of the'experiment described in the thesis
was to study the relationship between in-line and cross-flow
responses of a long flexible cylinder under realistic field
conditions. These tests were more realistic than laboratory
ones, because it was possible to use a c¢ylinder of
sufficient length so that many different natural modes could
be excited in both directions thus permitting observation of

the relationship, if existent, between them.

Experiments were performed on long flexible cylinders

75 feet in length which were exposed to a uniform currents
ranging from O to 2.4 feet/second. Measurements 'taken'

included current, drag, tension and biaxial acceleration at
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seven locations unequally spaced along the test cylinders.

The angular orientations of the biaxial accelerometasrs wers

by

initial unknowns, which had to be resolved by evaluation o
the gravitational acceleration components recorded with the
data. Once the orientation was established the real in-line
and cross-flow vector acceleration components were obtained.
A numerical double integration technique was developed to
determine the vector displacement time histories at the
seven measurement locations. By a 1least squares ‘error
minimization method, it was possible to eQaluate the
individual modal contributions for in-line and cross-flow
motions at lock-in and non-lock-in conditions. 1In other
words, the vector displacement response was reduced to the
separate time hisﬁories of the modal responses of the
individual contributing modes. The results of modal
analysis show that there exists a strong relation between
- the drag coefficient and the total vibration energy in these
two directions, which represents the behavior of the entire
cylinder rather than the 1local behavior at individual
measurement points. This gives the preliminary indication

of the existence of a relationship between them.

Linear spectral analysis of the non-lock-in random
response indicated that the response in the cross-flow

versus in-line directions were almost linearly independent:
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therefore, a nonlinear relationship was exp
frequency doubling and summing phenomena suggested that a
higher order spectral analysis was required to investigate
the nonlinear interaction whicﬂ might exist between 1in-line
and cross-flow responses. The Dbispectrum, which 1is a
cumulant average of a product of three spectral _components,
was then used to detect the existence of gquadratic
correlation. The cross-bicoherece spectrum provides

evidence of the existence of a quadratic correlation between

cross-flow and in-line response.

Tovdetermine the fractions of 1linear and quadratic
correlations contributing to the nonlinear relationship, a
second order system identification waé performed for Dboth
lock-in and non-lock-in cases. Due to the nature of nearly
deterministic lock-in response, a time domain multiple
regression method was applied to the lock-in system
identification problem, while a frequency domain error
minimization method was used for the non-lock-in random
vibration case. The results showed that nonlinearities
higher than second order were negligible for both lock-in
and non-lock-in cases. In-line and <cross-flow responses
were linearly »independent at non-lock-in. Quadratic
correlation accounted for all but a small amount of the

nonlinear correlation between in-line and cross-flow.
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CHAPTER 2

THE EXPERIMENT

2.1 Test Site

The site chosen for the experiment was a sandbar
located at the mouth of Holbrook Cove near Castine Maine as
shown in Figure 2-1. At low tide, the sandbar was exposed
allowing easy access to the test equipment while at high
tide it was covered by about 10 feet of water. The test
section was oriented normal to the direction of the current
which varied from O to 2.4 ft/sec over the tidal cycle with
only small spatial differences over the section length at

any given moment.

The data taking station for the experiment was the R/V
Edgerton chartered from the MIT Sea Grant Program. The
Edgerton was moored for the duration of the experiment
approximately 300 feet from the sandbar and connected to the

instruments on the sandbar by umbilicals.

Prior to the data acquisition part of the experiment,
several days were needed to prepare the site. A foundation
for the experiment was needed to anchor the supports that
were to hold the ends of the test cylinders. To accomplish
this, six 4.5 inch diameter steel pipes were water Jjetted

into the sandbar wutilizing the fire pump aboard the
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Edgerton. These six pipes were made of two, five-foot

-

iy

sections Jjoined by a coupling so that the overall leng

(r
)

o}

.

each was 10.0 feet. In addition, cne 2.0 inch steel pipe, ©

(0]

feet long, was Jetted into the sandbar to be used as a
current meter mount. Figure 2-2 shows a schematic diagram

of the experiment test section.
2.2 Test Cylinder

2.2.1 Cable

A 75 foot 1long instrumented cable was developed
specifically for the experiments that were performed in the
summer of 1981. The outer sheath for the cable was a single
pieée of clear flexible PVC tubing, which was 1 1/4 inches
in outer diameter by 1.0 inch in inside diameter. Three 1/8
inch diameter stainless steel cables ran through the tubing‘
and served as the tension carrying member. A cylindrical
piece of 1/2 inch diametér neoprene rubber was used to keep
the stainless steel cables spaced 120 degrees apart. The
neoprene rubber spacer was continuous along the length
except at seven positions where biaxial pairs of
accelerometers were placed. Starting at the east end these
positions were at L/8, L/6, L/4, 2L/5, L/2, 5L/8, and 3L/4.
These accelerometers were used to measure the response of
the cable. The accelerometers were Sundstrand Mini-Pal

Model 2180 Servo Accelerometers which are sensitive to the



direction of gravity. Each is 1/2 inch in diameter by 1.

(91}

inches 1long. The Dbiaxial pairing cf these accelercmeters

(D

v
“d

1

made it possible to determine their orientation and Thenc
extract real vertical ( cross-fléw ) and Thorizontal {
in-line ) accelerations of the cable at the seven locations.
Three Dbundles of ten wires each ran along the sides of the
neoprene spacer to provide power and signal connections to
the accelerometers and to the drag measuring system. An
Emerson and Cuming flexible epoxy was used to fill the voids

in the cable and make it water tight. The weight per unit

length of this composite cable was .7704 lbs/ft in air.

2.2.2 Steel Tubing

In a second set of experiments, the composite cable was
placed inside a 1.631 inch 0.D. by 1.493 inch I.D. steel
tube. The tubing was made of four equal 1length sections
that were Jjoined together. At the internal joints steel
nipples were welded to each tube section and stainless steel
threaded couplings were used to join them. The tubing was
connected to the hydraulic cylinder and to the drag cell
mechanism by custom-made universal joints to provide pinned
end conditions. These special end connectors also kept the
céble inside the +tubing under a slight tension, and a

neoprene spacer at intervals of 18 inches between the cable



-20-

and tubing 1inhibited any relative motion between the two.
The remaining cavity was allowed to £ill with water. The
weight per unit length of the steel tubing with the cabls

inside and the voids flooded with water was 2.2344 1bs/f

t

A 4

in air.

2.2.3 Lumped Masses

In another set of experiments, lumped masses were
fastened to the bare cable and their effects studied. The
lumped masses were PVC cylinders 12.0 inches 1long and 3.5
inches in diameter. A 1.25 inch hole was drilled through
the center of each 1lump so that the cable could pass
through. In addition, four .625 inch holes were drilled
symmetrically around this 1.23 inch center hole so that
copper tubes filled with lead could be inserted to change
the mass of the lumps. 1In the field, it was difficult to
force the cable through the holes drilled in the PVC so each
mass was cut in half along the 1length of its axis. The
masses were placed on the cable in halves and held together
by hose clamps. Different tests were run Dby varying the
number and location of lumps and by changing the mass of the
lumps. The results of these tests will not be reported in
this thesis, but may be found in references [15], [20] and

{30].
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2.2.4 Faired Cable

Finally, 11.6 x 1/16 1inch diameter Endeco plast

[N
0}

stranded fairings were applied +to the cable to evaluz-=

their effectiveness as strumming suppression devices.

2.3 Measurement System

2.3.1 Drag Measuring system

A load cell mounted at one end of the test cylinder
measured the horizontal shear force on one end of the test
cylinder. The cylinder and its supports were symmetric, and
therefore the measured force was one half the total drag
force on the cylinder. Mean drag force was measured. The
mechanical details of the drag measuring mechanism may be
found in the thesis by J. McGlothlin [20]. The 1load cell
was a Sensotec Model 41, packaged for underwater use. The
signal from the load cell traveled through wires in the test
cylinders and through the umbilical to the Edgerton where it

was conditioned and recorded.

2.3.2 Current Measuring System

The current was measured by a Neil Brown Instrument
System DRCM-2 Acoustic Current Meter located 12.5 feet from
the west end of the test cylinder and 2 feet upstream. It

was set so that it determined the current at the level of
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the test cylinders. Signals from the current meter traveled
through umbilicals to the Edgerton where they were monitored
and recorded. In addition, a current meter traverss was
performed using an Endeco current meter to determine the
spatial differences in current along the test section. The
current was found to be spatially uniform to within + or -
3.0% from end to end'for all current speeds above 0.5 feet

per second.

2.3.3 Tension Measuring System

The tension measuring and adjusting system was located
at the east end of the experiment test section. Extensions
were made to the two inner water jetted posts at this end.
As shown in the diagram, a 5-foot extension was made to the
center post and a 3-foot exterision was made to the inner
most post. What made this 3-foot extension different from
the rest was that its attachment to the jetted pipe at the
mudline was a pin connection as compared to the standard
pipe couplings used on the other extensions. This pin
connection gave it the ability to pivot in the plane of the
posts. Onto this pivoting post, a hydraulic cylinder was
mounted, horizontally, 2.5 feet above the mudline. The test
cylinder was connected at one end to this hydraulic cylinder

and at the other end to the drag measuring device. The test
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cylinder was attached 2.5 feet above the mudline, a

sufficient distance to avoid any boundary layer eff=

0

+

[0}

caused by the sandbar. A cable ran from the back of

ot
oy
0]

hydrauiic cylinder to a Sensotec Model RM In-Line load c

[
pt
P

which was anchored at the other end to the center post. In
this way, the force on the test cylinder was the force seen
by the load cell minus a small amount due to friction in the
pin. The output from the tension load cell passed through
the umbilicals to the Edgerton where it was monitored. A
hydraulic hose ran from a hand operated pump on the Edgerton
to the hydraulic cylinder so that the tension could be
changed as desired. This was not a constant tension system.
Stiction in the hydraulic cylinder kept‘the distance between
the attachment points of the test cylinder a constant unless
intentionally changed. Therefore, tension varied slowly

with current speed and mean drag force.
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CHAPTER 3

ANALYSIS OF EXPERIMENTAL DATA

3.1 Vector Rotation of Acceleration Time Series

The orientation of the biaxial accelerometers was
initially unknown. Because it was our purpose to study the
relation between in-line and cross-flow vibration response,
it was necessary to separate the measured acceleration into
in-line and cross-flow components. This required
determining the accelerometer orientation angle, which then
permitted recovery of the in-line and cross-flow components
by vector rotation of the acceleration time series. The
accelerometers used were sensitive to gravity and gave a DC
offset to the recorded signal. Figure 3-1 defines x’(p) and
y' () as the actual orientation of the accelerometer axes.
@ is the angle of rotation necessary to describe the motion

!

in the desired coordinate system. The X and vy

measurements have DC offsets ( DCx and DCy ) proportional to

the component of gravity which was measured in that

direction. From these DC offsets the angle O may be
obtained.
-1 | DCx |
o=tan + ko
| DCy |

(3.1.1)
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VECTOR ROTATION OF

X N

RAW ACCELERATION

. DCx=3 SIN

-1
3 6= TaN (2EX )
DCy= 3 COS DCy

XCtD> = X’¢t)> CO0SHB-— Y’<¢t> SIND

YC3> = X’C¥> SINB+ Y’/<%> COSB

31 Relation Between Rotated Angle and DC Offset
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K depends on the sign of DCx and DCy. After 8 has Dbeen
found, the in-line and cross-flow accelerations x(t) and

y(t) can be found by the vector rotation:

x (t)cose - 3y (t)eins (3.1.2a)

>
Pt
ot
g
1]

x (t)sin 6+ 5 (t)coss (3.1.2b)

4
ot
S~
]

Figure 3-2 and 3-3 show sample acceleration time Thistories
before and after rotation. Note that the cross-flow
acceleration has a DC offset equal to one g or 386.017

in/sec**2.

3.2 Integrator
In a continuous time description, equation (3.2.1)
represents the integration of acceleration a(t) to get

velocity v(t).
v(t) = a(t’) at (3.2.1)

A discrete time approximation for v(t) can be calculated by

a linear constant coefficient difference equation.
o -
v[n] = v[n-r]+T ZO blkla[n-k] (3.2.2)
k=

where r is the order of the filter and the b(k) are the
filter coefficients, m is the degree of the filter, and T is

the sampling period.



-27-

€l

Ve

UOT3810} ©.10Jog UOT}BJIS[D0Y POpI0OOAY

(23S dHWIL

e

<

0000 ‘0

Sdtl by ____ m

o/

"eecli-

uoww\ZH

‘@ocl!



-28.-

el

Ve

UOT3890} J93JY UOTJBISTE00Y [BOTJI8A TBAY

(33S) 3AWIL

¢-¢

%]%]% ]

%

———

———
g ————

]

11

‘eaci-

dS/HINI

98€=0d

}e

"00cl




3

-29-

Generally, the properties of digital integrators have
been developed in the time domain by fitting the data points
with a smooth curve. The time domain interpretation as
presented in equation 3.2.2 has an equivalent frequency
domain formulation. The Z-transform of eguation (3.2.2)

leads to the system function H(z):

vlk] z-
B(z) = T 0 (3.2.3)
-T
1-2

[T =

Evaluating H(z) on the unit circle of the z-plane yields the
frequency response function H(w). If the numerator of H(z)
is a mirror image polynomial then fo?ward and backward

integration in time will yield the same result. This leads

to:
{m/2) m
T 2b(k)cos{- - k)W
m-r k=0 2
HIW) = T exp[-i{—)W] for m odd (3.2.43a)
2 i sin{rW/2)
1 m m/2-1 m
- b{-) + £ b(k)cos(- - k)W
m-r 2 2 = 2
H(W) = T expl-i(—)W] - for m even (3.2.4b)
2 i sin{rw/2)

The frequency response function for an ideal integrator is:

HI(W) = T/(iw) (3.2.5)
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Recognizing that, if x(n) and X(w) are a Fourier transform
pair, then x{(n-m) and X(w)exp(-iwm) are also a fourier

transform pair. Any system function that can De written as:

B(iW) = -i 1H(iw)1 expl-ikw] (3.2.6)

where K is a constant, is a linear phase shift system. Let
<(n) Dbe the input to H(w) in equation (3.2.4) and Hi(w) in
equation (3.2.5) with y(n) and y'(n) Dbeing the respective

outputs. Rewriting H(w) and Hi(w) as:

BH(iw) = -i 1H(iw)l exp[-i@lil?w1 (3.2.7)
H (iW) = -i 1H (iW)1 (3.2.8)
I I ,
Then the transfer function between y(n) and y'(n) is,
Y(iw) 1H(iw)1 m-T
_ = exp(-1i W) (3.2.9)
Y (iw) 1H (iw)l 2 -
I I :

There is a linear phase shift between the ideal integrator
result and this integrator result. A comparision of the
magnitudes of (3.2.4) and (3.2.5) can be used to examine the
accuracy of the integrator. An error measurement E(w) is
defined as:

1H(W)1
E(W) = 20 log

= 20 log W1H(W)1 (3.2.10)
17 (W)l
I
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Figure 3-4 shows E(w) for a variety of integrators. The

choice of integrator 1s highly dependent on the domin

-
ad

ot

f

frequency range of the time series relative to the samplin

4l

frequency. As an example, 1f the data were sampled at a
relatively high frequency and most energy of »the signal
concentrate at a freguency lower +than O0.1%® , then the
trapezoidal rule integration would be the appropriate one to
use. For the Castine experiment, the sampling frequency was
30 Hz, and the typical frequency range for the cylinder
response was from 2 to 9 Hz. This corresponds to
dimensionless digital frequencies in the range from ©0.13 ®
to 0.6 T where Tt corresponds to half the'sampling frequency.
Figure 3-4 shows that the error for Trapezoidal '~ rule
integration in this range is from 2% to 50%, and 0.1% to 10%
for Simpson's rule. The errors are larger at the higher
ffequenciese Many maximally £flat inteérators have been
presented in the literature (25). Figure 3-4 shows two
examples for filters of degree m=2 and 4. The error for m=4
is reduced to a maximum of 0.5% at the highest frequency of

interest.

Schuessler and Ibler (25) pointed out two  Dbasic
mistakes in +the application of this integration formula.
First, the filter coefficients b(k) should be time-verying

instead of constant according to the equation:



E
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b{k) uln-r+k) k=0,1,.c...,(r=1)
b(k,n) = (3.2.11)

b(k) k=r,r+1,....,m
where b(k) are filter coefficients and u(k) is a wunit step
function. The reason 1is that according to the continuous
integration equation (3.2.1) v(0)=0 must hold. But by using
the digital integrator (3.2.2), v(0)=b(0)a(0) rather than
zero. If (3.2.10) is used, v(0)=b'(0,0)a(0)=b(0)ul(-r)al(0)=0
which yields the correct result. Second, the Newton-Codes
formulas are, in fact, valid only for n=i*r with
i=0,1,2,...., so Schuessler and 1Ibler proposed that the
sampling frequency at input and output should be different.
This 1is accomplished by applying an interpolator to the
input sequences before the integrator is applied. The
combination of the interpolator and integrator into one

system led them to propose a new integration formula.

2L-1
v(n) = v{n-1)+7/3 = b (k,n) a(n-k) (3.2.12)
' k=0

where L is the length of the interpolator and

b(k) u(n-L+k) Os¢ k $L-1

b (n,k) = (3.2.13)
b(k) L sk §2L-1

3.3 Low Frequency Noise Expansion
The vibration velocity, v(t), and displacement, d4&(t),

can be obtained from the acceleration, a(t), by numerical
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integration. If v(0) is the initial velocity at £=0, the
time of the start of data collection, then

1 1
v(t) = vO) + sh(t )at (3.3.1)
0

The initial velocity v{(0) is unknown. However, a pounded
displacement d(t) is desired. This requires that there Te
no linear trend or DC component in the velocity v(t). The
value v(0) can be arbitrarily set to zero. Following the
integration of a{t) a straight line is fitted to v(t). The
offset and trend which are fQund may be then removed from

v(t). Equation (3.3.1) can be rewritten as:
v(t)=a(t) * u(t) ' A (3.3.2)
where u(t) is the unit step function and * denotes a

convolution integral. Taking the Fourier transform of

equation (3.3.2) yields:

]

V(W) = A(W) [ 7 s(w) + 1/(iw) 1 = A(0) »+ A(W)/(iW) (3.3.3)

it

A(0) = [ a(t)dt (3.3.4)

The term A(0) can be removed by fitting a straight 1line to

a(t) to remove any linear trend or DC component in
acceleration a(t). The transfer function between a(t) and
v(t) is:

H(W) = V(W)/A(W) = 1/(iw) (3.3.5)
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The same procedure can be applied to integrate v(t) to get:
d(t) except that the assumption for the zero mean d(t) is no
longer true. But, we are interested only in +he dynamic

response oOf the «cylinder, so d(0) can be set arbitrarily.
Integration has characteristics of a low-pass filter with a
gain which goes to infinity as the frequency goes to zero.
This leads to the undesirable expansion of low frequency
noise in the integration process. Figure 3-5 shows a sample
of an acceleration time series. Figure 3-6 is the FFT of
this acceleration. A negligible component of low frequency
noise is shown. Figure 3-7 show that after integraticn, low

frequency noise blew up in the velocity time series.

This reveals that low frequency noise expansion leads
to unacceptable integration errors. To correct the problem,

a high-pass filter is required.

3.4 High-Pass Filterv

A linear digital filter is a 1linear time-invariant
system represented by a linear constant coefficient
difference equation [22]:

N M

= ' n-k] +35 D x[n-k]
y(n] I ak vl o (3.4.1)

The corresponding system function is given by
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0 k , (3.4.2)

where x(n) is the input signal, y(n) is the output signal,
and ak and bk are filter coefficients. For a stable causal
filter all the poles of this system function must lie inside

the unit circle.

For an 1ideal 1low-pass (or high-pass) filter, the
transfer function magnitude contains a sharp discentinuity
at the cut-off frequencies and the required filter order is
infinite. Thus a transition band at the cut-off frequencies
and a tolerance error in pass-band and stop-band are

provided to approximate the desired filter.

If the system function H(z) in (3.4.2) contains poles
solely at the origin, the filter is called a finite impulse
response (FIR) filter. Otherwise it is an infinite impulse

response (IIR) filter.

a FIR filter is always stable and a 1linear phase is
always achievable by choosing a symmetric impulse response
function. For the same desired filter characteristics, the
FIR filter must Dbe of a much higher order than the
comparable IIR filter, and therefore the FIR filter may

require more computer time. However, IIR filter always has
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1}

nonlinear phase characteristics. As a conseguence, th

h

choice of IIR or FIR filter is dependent on the desire
phase requirement as well as computer time efficiency. For
this research, both of these filters are used and it depends
on the particular purpose in the data analysis. For the
modal analysis the phase informations are important and the
FIR filter was used. While in the RMS response calculation
of the 2 and 1/2 hours long records, the IIR filter was used

for the purpose of computer efficiency.

McClellan, Parks and Rabiner [19] formulated the FIR
filter design problem in terms of a weighted Chebyshev
approximation problem and solved it using the Remez multiple
exchange algorithm. The relative approximation error in
these optimal filters is spread out uniformly in frequency,
so a lower filter order would be sufficient. A computer
program for the design of an IIR elliptic filter has Dbeen
published by Gray and Markel [10]. The élliptic filter
possesses the equiripple characteristics and has been widely
used to achieve the restrictive frequency . domain
requirement. The above FIR and IIR filters design method

was used in the double integration procedure.

The following procedures, outlined by Rabiner and Gold
[23], could be used to eliminate the nonlinear phase effect

of an IIR filter. Let x{n) and y(n) be the sequences before



and after the filter respectively. R is the time inverss
device, and H(z) is the filter system function. These ¢

be used in the following seguence

[n] t{n] o
X[n]‘—"_’ [H(Z)}r[n]r[R]SLn [E(Z)]————#[R]——-—ty‘LnJ‘
R(W) = X(W) B(W)
S(W) = R(-W) (3.4.3)
T(W) = S(W) B(W)
T(W) = T(-W)

These relations imply the following:

2

Y(W) = X(W)E(W)H(-W) = X(W) 1 H(W) 1 (3.4.4)

The new system function between x(n) and y(n) is the square
of the magnitude of the origiﬁal filter's system function
and has zero phase shift. However, since this zero phase
condition 1is achieved by applying the IIR filter twice,
i.e., on the signal itself and on a time reversed version of
the once filtered signal, filter transients will exist on

both ends of the resultant signal.

3.5 Double Integration Procedures
A summary of the procedure for double integration of a
digital acceleration signal follows. The procedure contains

the following steps:
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4

Obtain the acceleration spectrum and divide it by w

to obtain the thecoretical dismlacement spectrum. U

n
[t}

these two spectra as a subjective aid 1in the
determination of the high-pass cutoff fregquency necessary

for the prevention of low-frequency noise expansion.

Using the method of least sqguares, fit a straight line to
the Dblock of data to be integrated. Use this to remove
DC offset and any linear trends from the data prior to
integration. The typical Dblock 1length 1is 1024 data

points in the results presented here.

High-pass fiiter the signal wusing either IIR or FIR
filter to remove any low frequency noise. The choice of
the type of filter is based on the discussion in section

3.4

Integrate the signal using the Schuessler~Ibler

integrator.

Repeat step 2 to step 4 for the second integration to

obtain the displacement signal from velocity.

Least squares fit a straight line to the displacement

signal to remove any linear trend or offsets.
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7. High-pass £filter the displacement signal to remove low

frequency components that were expanded in the
integration.
It must be emphasized here +that the choice of

integrator is highly data dependent as discussed in section
3.2. The Schuessler and Ibler integrator is appropriate for
the Castine data but may not be a good choice for other

data.

3.6 Cylinder motion at Lock-in and Non-lock-in

In the preceeding sections, the data analysis process
was presented, including vector rotation, high-pass filter
and double integration procedures. In this section, typical
analysis results of cylinder motion at lock-in and
non-lock-in are presented. Compressed 2 i/2—hour records of
drag coefficient, current speed, and RMS displacement

response are also presented.

3.6.1 Cylinder Motion at Lock-in

Lock-in occurs when the vortex shedding frequency falls
within a few percent of a natural frequency of the cylinder.
The vortex shedding process 1is synchronized with the
cylinder’s motion, and a stable nearly sinusoidal transverse
displacement of nearly constant amplitude is observed.

Figure 3-8 shows an example of cross-flow displacement of
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the pipe at L/4 during lock-in with the third mode. Figure

3-9 is the corresponding magnitude of FFT. A sin

16}
’,.J
U]

dominant peak is observed.

In the in-line direction, the motion is quite different
from the cross-flow response at lock-in. A periodic but
nonsinusoidal displacement 1is observed 1in the in-line
direction as shown in figure 3-10. Figure 3-11 presents the
magnitude of the FFT. One important observation 1in this
result is that the dominant frequency in the in-line
direction 1is exactly double that in the cross-flow
direction. This frequency doubling phenomenon is always

observed at lock-in case.

By double integration of both measured in-line and
cross-flow acceleration time histories, it is possible to
plot the trajectory of the motion of a point on the
cylinder. Figure 3-12 shows the motion at L/4 projected
onto a plane which is normal to the cylinder axis. 1In this
case the cross-flow motion was locked-in at third-mode and
the in-line motion was at twice the frequency of the
cross-flow motion and was dominated by response in the
fifth-mode. A small amount of third-mode motion also
appears in the in-line response. Without it there would be

nearly perfect figures of eight.
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At this point in the analysis, one does not generally

know for certain which natural modes of vibration are

responding. It will in fact Dbe shown that the in-line
response does not always excite a resonant natural
frequency.

3.6.2 Cylinder Motion at Non-lock-in

When the vortex shedding frequency is outside of the
lock-in range, non-lock-in vibration results. The response
is characterized by fluctuations of amplitude and frequency
in both 1in-line and cross-flow directions. The 1lift force
correlation length along the cylinder becomes much shorter
~ than that at lock-in. Figure 3-13 through 3-16 show typical
displacement time histories and their magnitude of FFTs 1in
the cross-flow and in-line direction. Wide band 1lift and
drag forces are implied. Figure 3-17 shows the
corresponding displacement trajectories. One other
important observation in the non-lock-in case 1is that the
in-line response frequencies "are equal to the sum of
response frequencies in the cross-flow direction. Also the
in-line response fregquencies do not correspond to any
natural fregquency of the cylinder. The linear coherence
spectrum Dbetween 1in-line and cross-flow responses as shown
in PFigure 3-18, indicated that they are two linear

independent random processes. This result is not surprising
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because the response freguencies in these two directions are

totally different.

The frequency doubling and summing phenpmena for Dboth
lock-in and non-lock-in cases raise the question of whether
the responses in the in-line and cross-flow directions are
independent or not. If they are not indépendent, then the
task becomes how to prove they are related and what kind of

relationship it is.

Finally, the probability distribution at non-lock-in
case was examined. Figure 3-19 shows the histogram of the
cross-flow response for the non-lock-in case. There appears
to be no significant departure of the histogram from a
Gaussian distribution. A Chi-sguare goodness of fit test
with a 5% significance level was performed on the histogram
from which we concluded that the non-lock-in cross-flow
response can be approximated by a Gaussian random process.

This result is very important for latter analysis.

3.7 Current, Drag Coefficient and RMS Displacement

the RMS data for in-line and cross-flow displacements
for complete 2 1/2-hour data acguisition cycles were
calculated for the pipe, bare cable, faired cable and a
cable with lumped masses. The RMS data were calculated by .a

moving average whose window was 8.53 seconds in length.
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These results are presented in figure 3-20 to 3-23, along
with linear moving average values of drag coefficient andgd
current speed. The displacement dJdata are taken from
location 1/6 L for the pipe and the bare cable, from
locationb 3/4 L for the cable with lumps and from location
2/5 L for the faired cable. Over the 2 1/2-hour test, some
periods correspond to lock-in responses, and others to
non-lock-in responses. As current speed falls within a
lock-in range, a substantial increase of cross-flow and/or
in-line RMS displacement 1is observed. A corresponding
elevated plateau in the drag coefficient is also observed.
These are raw RMS displacements at the specified 1location
and have not been corrected for mode shape. Due to the fact
that these raw data are highly positional or modal
dependent, the 1in-line and cross-flow RMS displacements in
these figures do not give a good indication of any relation
existing Dbetween these two direction's responses. 1In the
next chapter, modal analysis 1is wused to represent the
behavior of the entire cylinder in order to provide a better
indication of any possibly existing relation between in-line

and cross-flow responses.
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CHAPTER 4

MODAL ANALYSIS

In the last chapter, it was stated that there exist
frequency doubiing and summing phenomena for both lock-in
and non-lock-in cases, from which we expect that the in-line
and cross-fldw responses should not be totally independent
in spite of the fact that they are linearly independent, as
indicated by the 1linear coherence spectrum. In this
chapter, a least squares error minimization method is used
to estimate the natural coordinates of all the participating
modes. Total vibration energies in both directions are then
calculated from the natural coordinates and the known mode
- shapes. 1If in-line and <cross-flow responses are indeed
related, the vibration energies, which represent the
behavior of the entire cylinder, should be able to provide
evidence of the existence of a relationship between in-line

and cross-flow directions.

4.1 Modal Analysis of a Uniform String

The response of a cylinder under external load can Dbe
described conveniently by using modal analysis. The method
is intended to express the response as a superposition of
the system's eigenfunctions multiplied by their
corresponding time-dependent natural coordinates. As an

illustration of this method, consider a uniform string under
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tensile load with pinned end boundary conditions. The

equation of motion for this boundary problem is:

7y (x,t) - R(x) v(x,t) + £(x,%) = e(x) §(x,t) (4.1.1)

The response y(x,t) may be expressed as a superposition of

normal modal responses.

1) = ¢ Y (x) P (%)
y(x ) r=1 T T (4-1.2)

where Yr(x) 1is the normalized mode shape and has the

following orthogonality property.

IHm(x) Yr(x) Ys(x) ax =5 _ (4.1.3)

Substitution of (4.1.2) into (4.1.1) multiplication by
¥s(x), and integration from x=0 to L leads to:
. L 2

P (t) + P (t) /R(x) Y (x) ¥ (x) dx + ¥ P ()= (%) (4.1.4)
r r 0 r s r r r :
I1f R(x) is proportional to m(x), orthogonality of normal
modes leads to a set of uncoupled single degree of freedom
oscillation equations in terms of the natural coordinates

Pr(t).

For R{(x)= C m(x) (4.1.5)

. . 2
P (¢) +CP (£) + WP (%) =X () (4.1.6)
r T rrT T
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where Nr(t) the modal force is defined as:

¥ (t) = { Y (x) f(x,t) dx (4.1.7)

by r

In reality, the damping may not be governed Dby equation
(4.1.5). However, for lightly damped well separated modes,
the uncoupled normal mode equations may be derived for a
beam under tension, with pinned end conditions. For a
uniform beam the mode shapes are sinusoids as they are for a
uniform string. By using medal analysis, the continuous
system is reduced to many single degree of freedom systems.
In the next section we will estimate the natural coordinate
time Thistories, Pr(t), from measured responses at the

accelerometer locations.

4.2 Estimation of Natural Coordinates
In the preceding section, the response of the cylinder
was expressed in terms of a superposiﬁion of mode shapes

Yr{x) muitiplied by the natural coordinates Pr(t):

y(x,8) =3 P () ¥ (x)

4.2.1

r=1r T ¢ )
In this experiment, the response was measured at seven
positions. They are at L/8, L/6, L/4, 2/5L, L/2, 5/8L,

3/4L. In this study, a least sguares method was used to
estimate the natural coordinates in terms of the measured

responses at these seven positions. For any test case the
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response 1is dominated by a finite number of modes usually 2
to 6 in number. A first guess at the responding modes may
be obtained by inspection of the response spectrum at any
one location. By summing the normal mode responses over the
apparent participating modes, the following equations are
obtained, where the range M.N covers all of the
participating modes. The mode shapes can be calculated
theoretically. For the pin-supported uniform cylinder, the
mode shapes are given by

Yr(X)=sin(r X/L)
At time t=to, the response of position X=Xj can be expressed

as:

v(x ,t ) =y P (t)Y (x)+E(x)
i 0 d=m i 0 i 3 (4.2.2)

1]

Where E(XJj) is the error term.

Rewriting (4.2.2) in matrix form

{y} = [Y] {P} + {E} (4.2.3)

where yj 1is the vector of the measured response
Yij is the mode shape matrix
Pi 1is the vector of natural coordinate
Ej 1is the vector of error
i=m,N i=1,7

The sum of error sguares ee is given by
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T
ee = <>{E} = {{y} - [Y){P}} {iyl-[Y]iP}]}

(4.2.4)

T T 9 T T
{y] {y)- 2fp}) [¥] {3y} + {?»} [¥] [¥] {P]

The vector of natural coordinates Pi 1is to be determined

such that the error squared term is minized.

T
min[ee]=min[{E} {E}]

Let

d

;(ee) =0 (4.2.5)

1

and solve for P(t)

T -1 -1 (4.2.6)
{p} = [[v] [y]] [v] {5} S :
{r} = [7] {¥] (4.2.7)
where [T] is the transfer matrix:
T -1
(2] = [[¥) [¥]] [¥] (4.2.8)

Equation (4.2.7), decomposes the measured response at
the seven positions 1into the natural coordinates provided
the mode shapes are known and the guess o0f the responding
modes 1s initially correct. Figure 4-1 shows an example of
the horizontal pipe vibration displacement at position L/8.

It 1is clear that several modes were excited. In the
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displacement spectrum, there are several peaks, each
corresponding to one particular mode to be identified.
Using the method discussed above, the natural coordinate
time histories were obtained for the 4th, 5th, 6th and 7th
modes corresponding to each peak 1in the displacement
spectrem, shown in figure 4-2. These natural coordinate
time histories are shown in figure 4-3. The FFT of fourth-
and fifth-mode natural coordinates are shown in figure 4-4
and 4-5. Each natural coordinate time history represents
the antinode displacement for that mode. +their sum does not
equal the displacement portrayed in figure 4-1 because it is
the motion at a specific point on the cable. Their sum
correctly weighted by the value of the respective mode
shapes at that location would equal the displacement shown

in Figure 4-1.

4.3 Vibration Energy

Lock-in responses can be analyzed with deterministic
models, unlike non-lock-in random responses. At constant
current speed when the c¢ylinder is at non-lock-in, the
participation of different contributing modes varies with
time. An example of this phenomenon spanning a short period
of time 1s presented in figure 4-3 obtained from the modal
analysis. It is enlightening to study non-lock-in response

on a longer time scale. A 448-second record of non-lock-in
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pipe response was analyzed and the contributing modal
responses were separated by the modal analysis. Moving
average RMS natural coordinate responses in both directions
were calculated. These are plotted in figure 4-6 and 4-7.
These responses reflect the RMS values of the individual
modal anti-node response. Notice that as the response of
one mode recedes, another appears to take its place. The
current and drag coefficient for the same time interval is

shown in figure 4-8.

Moving average vibration energies were calculated from
these natural coordinates and mode shapes in both in-line
and cross-flow directions as shown in figure 4-9. " The

vibration energy is given by

2 4 2 2 .2
B(t) = L/4 3§ | EI Pr (t)(ng /L) +T Pr (ng /1) +m Pr (t) }
Tr

Relationships between in-line and cross-flow vibration
energy were observed which implied that in-line and
cross-flow responses shouldn't be independent of each other
in spite of their linear independence. We then eexpected

the relationship must be nonlinear.

The drag coefficient is also related to the vibration
energy as shown in figure 4-9. The scatter diagram between
drag coefficient and in-line vibration energy in figure 4-10

shows an interesting result. From lock-in to non-lock-in



-79-

18.2

Urag Loe.

Current

Total In-line Energy

Total Cross-flow Efergy

ENERGY,DRAB COEF. CURRENT

Total Energy

RAAN

t 13 i | | i i t i
g.B2 2t4.B 448.R

TIMI € &ET D

4=9 Drag Coefficient, Current, Totel In-Line and Cross-Flow

Vibration Energy, and Total Energy of the Pipe



-80 -~

‘.s—

Total In-line Energy

Non-lock-in

g.2 T ] | i | ] T ] i
2.B . B

- Drag Coefficient

4-10 Scatter Diagram of Drag Coefficient vs. Totzl In-Line

Vibration Energy in Figure 4-9



RS R N 1

-81 -

case, the path of the change is different from that of the

: !
non-lock-in to lock-in case. This history dependent
property has been observed by several other investigators

[24].

4.4 Response Mode of In-line Motion

In section 3.6 it was stated that the in-line response
fregquencies are equal to the sum of the cross-flow response
frequencies. Tﬁe question arises, what mode responds in the
in-line direction. These modal identification methods have
been used to provi@e the answer, with some very surprising

results. One such interesting case is described below.

For a taut cable, all of the natural freéuencies are
integer multiples of the lowest. Therefore it is reasonable
to expect that the fluctuating drag forces will excite an
in-line mode whose natural frequency is twice that of the
mode which is responsible for the cross-flow lock-in. As
will Dbe shown, this 1is often not the case. Figures 4-11
through 4-14 are the displacements and FFT's of the cable in
the cross-flow and in-line direction at L/8. The cross-flow
motion is at the second-mode natural frequency of the cable,
and the in-line motion is at the fourth-mode natural
frequency. Least squares modal identification was carried
out in both directions and the resulting natural coordinates

revealed that the cross-flow vibration was in the
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second-mode shape, while the in-line vibration was in the
third-mode shape as shown in Figure 4-15, instead of the
fourth-mode &as had Dbeen expected. The frequency of this
third mode motion was not the natural frequency of the third
mode but was in fact equal to the natural frequency of the
fourth mode. The response was not resonant, but inertia

controlled response of the third mode.

Similar peculiar results of the non-resonant in-line
motion also happened for the non-lock-in case as mentioned
in section 3.6. What were the in-line response frequencies?
How to prédict them? These questions will be ansyered by
understanding the relationship between in-line and

cross-flow response.
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CHAPTER 5

BISPECTRAL ANALYSIS OF QUADRATIC CORRELATION

From the results of modal analysis, we know there must
exist some kind of relation between in-line and cross-flow
response as indicated by the closely related total vibration
energies 1in these two directions as shown in figure 4-9.
Next qdestion is what kind of nonlinear relationship is it.
In order to answer this question, a higher order spectral
analysis is required to study the correlation between time
histories resulting £from a nonlinear process. In this
chapter, the bispectrum, which is a cumulant avefage cf a
product of three spectral components, is used to investigate
the quadratic coupling between these two direction

responses.

5.1 Introduction to The Cumulant Spectrum
For a set of random wvariables x1,x2,....,%n the
characteristic function is defined as [16]
n
¢ (v1,v2,...,Vn)=Elexp(i £ x3jVi)]
12...n j=1 (5.1.1)

The joint moment ml2..n and joint cumulant k12...n can Dbe

expressed in terms of the characteristic function as
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o (x1,x%x2,...xn)=E[x1,x2,...,xn]
12...n
n, (5.1.2)
n 9 %2, ..n
=(-1)
V1 aV2.... 5Vn |Vi=VZ2=...=Vn=0
and
¥ (x1,%2,...,%n)=C[x1,%2,...,%xn]
12...n
n s™Mn C12...n (5.1.3)

Vi aV2... 3Vn [V1=V2=...=Vn=0

where E[.] represents expected value, and C[.] represents
the cumulant average. The relation between the joint

cumulant and the joint moment can be expressed as

k1=ml

k12=p12-mim2

(5.1.4)

k123=m123-m12m3-m13m2—m23m1+2m1m2m3

k1234=m1234—(m12m34+m13m24+m14m23+m123m4+m124m3+m134m2
+3234m1)+2(m12m3m4+m13m2m4+m14m2m3+m23m1m4+m24m1m3

+r34nim?)-6ml m2r3m4

From this relationship, the following two important
properties are obtained:
a) When n=3, kl1l2...n=0 for Gaussian random variables.

b) k12...n=0, when random variables x1,x2,...,Xn can be
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divided into any two or more groups which are

statistically independent of each other.

Notice that the moment ml2...n would not be zero,
although the random variables x1,x2,...,xn consist of
independent groups, but the cumulant kl12...n would be zero.
As a result, the cumulant can measure the extent of

statistical dependence of the random variables.

For a stationary random time series x(t), the nth order

cumulant function is [6]:

cn(U1,02,...,Un-1)=Cx(4)x(t+U1)x(2t+02).....x(t+Un-1)](5.1.5)

The Fourier representation of Cn(Ul,U2,...,Un-1) is:

n-1

Cn(Ul,...,Un-1)= Sfeees Fo(Wl,...,Wn-1)exp(-1i ¢ WkUk)dWl..dWn-1 (5.1.62)
k=1
n—-1

Fo(Wl,...,Wn=1)= f-++% Cn(Ul,...,Un-1)exp(iy WkUk) (5.1.6b)
Ul Un-1 k=1

Fn is nth order cumulant spectrum. It can be shown that

[16]:

W

wi) (5.1.7)

i

cl¥1,X2,...,%n)=Fn{W1,¥2, ... ,Wn=1) 8 (

&
i
~

where
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Xk=1/T S x(t)exp(i Wk t)at (5.1.8)
1, 1 £ x=0

6(x)={ (5.1.9)
o, otherwise

Equation (5.1.7) states that cumulant average of the
Fourier amplitude of x(t) will be zero except when their sum
frequency vanished. However if the waves at frequencies
Wl,wW2,..,Wn can Dbe divided into statistically independent
groups, the cumulant spectrum will be zero even though their

sum fregquency is zero.

As a conclusion, cumulant speétrum will be zero unless
both following.two conditions are satisfied:
a) Sum frequency W1+W2+...+Wn=0
b) Waves at frequencies W1,W2,...,Wn are statistically

related to each other.

Let x(t) be a zero mean stationary time series,
the auto-~-bispectrum

B(wj,wk) of x(t) is defined as:

*
Erxx(Wj,we)=C[Xj Xx Xj+k] (5.1.10)
The auto-bicoherence spectrum, a normalized

auto-bispectrum, b(Wj,Wk) is:
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1 Bxxx(¥3j,Wk) 1 (5.1.11)
bxxx(Wi,Wk)=

{E[1%j XY JEl1Xs+k2® 13°°

By using Schwarz' inequality, it can be shown that
auto-bicoherence spectrum b(W3i,Wk) is bounded by
Ogb(Wj,Wk)sl. 1If the wave at Wj+Wk is excited by coupling
of the waves at Wj and Wk, the auto-bicoherence spectrum
will be close to unity. On the other hand, if wave at Wj+Wk
is uncorrelated quadratically to the waves at Wj and Wk,

bxxx(Wj,Wk) will be near zero.

Let x(t) and y(t) be two zero mean Jjointly stationary
time éeries, the cross-bispectrum Bxxy(W3j,Wk) between x(t)
and y(t) is:
¥*
Bxxy(Wj,Wk)=C[Xj Xk Yj+k] (5.1.12)
The cross bicoherence spectrum bxxy(Wj,Wk) between x(t) and
vit) is:

1 Bxxy(wj,Wk) 1
bxxy (Wi, Wk)= (5.1.13)

< 4
(2l1%3 Xk )B[1vs+el ]} 00

The cross bicoherence spectrum also ranges from zero to
unity. If the wave at Wj+Wk in y(t) is excited by coupling.
of waves at Wj and Wk in x(t), the cross-bicoherence

spectrum bxxy(Wj,Wk) will be close to unity. If the wave at



-93-

Wj+Wk in y(t) is uncorrelated quadratically to the waves at

W3 and Wk in x(t), bxxy{Wj,Wk) will be near zero.

5.2 Cross-bicoherence Spectrum Test Examples

In order to 1illustrate how the cross-bicoherence
spectrum can detect quadratic coupling between waves, the
following five examples were tested. Six time series were

generated on a computer as follow:

x(t)=cos{Wat+Pa)+cos(Wbt+Pb)+n(t)
vli(t)=cos(Wct+Pc)+n(t)
v2(t)=cos(Wct+Pa+Pb)+n(t)

(5.2.1)
y3(t)=cos(Wat+pa)*cos(Wbt+Pb)+n(t)
yd(t)=cos(Wat+Pa)*cos(Wbt+Pb)+0.5cos(Wct+Pc)+n(t)

y5(t)=cos(Wat+Pa)*cos(Wbt+Pb)**2+n(t)

-20 dB Gaussian white noise n(t) was added to each

series and these noise components were independent for each

series. Random phase Pa, Pb, Pc were chosen from a set of
independent pseudo random numbers, uniformly distributed
over (0,2*pai),and fa=3 Hz, fb=5 Hz, fc=fa+fb=8 Hz. The

sampling frequency was 30 Hz.

Figures 5-1 through 5-6 show the spectra of =x(t) and
yi(t) to y5(t), and figure 5-7 through 5-11 show the
cross-bicocherence spectrum between x(t) and yl(t) to y5(t).

Notice that yl(t) and x(t) are uncorrelated while y2(t) and
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x(t) are correlated quadratically, but the spectra of yl(t)
and y2(t) are identical to each other. This is because the
spectrum is independent of the phase of the waves. Both .
cross-spectra Sxyl(W) and Sxy2(W) are also zero because they
are linear inependent of each other. However the
cross-bicoherence spectrum bxxyl(Wl,W2) and bxxy2(Wl,W2) is
sensitive to phase. bxxyl(Wl,wW2) in figure 5-7 shows no
guadratic correlation  between x(t) and yl(t), but
bxxy2(W1,W2) in figure 5-8 shows a peak close to unity at
frequencies (Wa,Wb) which means that wave at We=Wa+Wb in
v2(t) is quadratically correlated to the waves at Wa and Wb

in =x(t). Higher order spectral analysis must be invoked to

detect any possible correlation between waves due to
quadratic nonlinearity. The wave at We=Wa+Wb in y3(t) is
due to the product of waves at Wa and Wb in x{(t), so

bxxy3(Wl,wW2} in figure 5-9 shows a peak close unity at
(Wa,Wb) . In series vy4(t), a wave at frequency Wc,
independent of x(t), was added to y3(t). Figure 5-10 shows
that bxxy4(Wa,Wb)=0.48 which implies that only half of the
power at Wc is due to the guadratic interaction of the wave
at Wa and Wb in x(t). In the 1last example, even though
y5(t) 1is coupled cubically with x(t), no correlation was
detected in the cross-bicoherence spectrum bxxy5(W1l,w2) in
figure 5-11. This 1s because bispectrum can only detect

correlation between waves which are quadratically coupled.



(1)x e3sQ 389] 8431 Jjo wndgoudg aemod -G

Qa S1 . (zH) Aduanbauy anad”

Y VU R R— _ _ : ‘o—=7" oeed' a

-95 -

oaa " |




-96 -

g 31

(1) 1£ ®yBQ 389 U3 JO Wn30edg Jsmog

(zH) Aduanbauay

¢-4

Qaay " Q

g e

baka " a

eea - |



-97-

Ba 31

(3)2£& B3e(Q 9835 843} JO mwniqoadg J18m0(d ¢-q

(zH) Aouanbaay

—l

oaya ' ag
| |

| [ {

~

—————

et s S/

Qad " a

oaa“ |



-98-

ea 3l

(3)ef ®3BQq 389F 943 Jo wnajgoadg damog

(zH) Aouanbauay

! ] 1 ! |

V-9

Quayg '@

kg a

[



(3)v£ ®838Q 383] 9y} JoO unigoadg 18M0g G-G

e gl AN—:, Kouanbauy uaaa°Q
B _ / L\\\Lf : : . 0o @
Q_J (
o -
eoa " |




-100-

ua- " si

(1)64 wynqQ 388y syg jo unaqoady demoy 9-¢

(zH) Aduanbaay

VA

e

QaRdy g

oua- |



-101-

(3) 14 PUU (3)X UsMOY YVUBIAYOO Y~UBIO] /=

Qa " si (ZH) Aduanbauy Quay ' v

I~ @oed’y

-

w (ZH) Aousnbauy

™~

Qaga 2




-102-

(4)ek PuUB (1)X usamjeq @dULIIYLVIJ-BUOID  y=h

Qas | AN_.: £d2uanbaay QY Q
| | i L | - [ | | = ] aaQad ¢
o SR, = -
3
— — ...M
- — M
I <
-~ o -
£ —_ - h,..\
= £ __ -
/w/ NHN\ H‘& ch
aua 2




-103-

(3)£4 puu (3)x udanjed 90U043Y0D [(-UB0JL

(ZH) Aduanboauy

b-6

Qa2



-104-

Q- Si

Apvvh pue (3)x usamjeq aousalayoo jg-e8old 0O1-§

(zH) Aduanbauay ROnY " Q

L | L | L. 1

*baud

(ZH)

G

al's e} < Il

kvag 2



. .7105-

Z2.0RQa

t)

(

x(t) and y5



-106-

From these examples, it is seen that, due to the 1lack
of phase information, the spectrum is not able to give a
positive and guantitative answer to the guadratic
correlation but bispectrum can. The bispectrum is a useful
tool in the investigation of the quadratic correlation
problem of vortex-induced vibration of cylinders in which
experimental observation results the freguency summing

phenomenon in both lockin and non-lockin cases.

5.3 Quadratic Correlation Between In-Line and Cross-Flow
Response

As mentioned before, the frequency summing or doubling
phenomena were observedlfrom the test data for both lockin
and non-lockin cases. The problem to be answered in this
section is: does any quadratickcorrelation exist between the
non-lock-in response at frequencies 3.7 HZ, 4.9 HZ in the
in-line response shown in figure 5-12 and waves at
frequencies 1.7 HZ, 2.0 HZ, 3.2 HZ in the cross-flow
response in figure 5-13. 1In this figure, the frequency at
3.7 HZ equals to the sum of frequencies at 1.7 HZ and 2.0
BZ. Rlso the frequency at 4.9 HZ equals to the sum of
frequencies at 1.7 HZ and 3.2 HZ. Similary for a lock-in
case, is there any quadratic correlation between the wave at
2.4 HZ in the cross-flow response shown in figure 5-14 and

the wave at 4.8 HZ, double of 2.4 HZ, in the in-line
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response in figure 5-15. Are all these waves at different
frequencies 1independent? Because of the freguency summing
property, the Dbispectral analysis technique is the

appropiate tool to answer these guestions.

For the nonlock-in case, the cross-bicoherence spectrum
bxxy(W1l,W2) Dbetween cross-flow and in-line response, shown
in figure 5-16, was obtained by averaging 100 segments of
128 data points each. The cross-flow and in-line spectra
are shown in Figures 5-13 and 5-12 respectively. The peak
shown at bxxy(l.7 , 2.0) means that wave at 3.7 HZ in
in-line response is due to quadratic coupling of waves at
1.7 HZ énd 2.0 HZ in the cross-flow response. Similary the
peak at bxxy(l.7 , 3.2) means that a wave at 4.9 HZ 1is due
to quadratic coupling of waves at 1.7 HZ and 3.2 HZ in the
cross-flow response. The rest of the peaks in Dbxxy(Wl,W2)
all have the same interpretation. Using these techniques, a
strong quadratic correlation was detected between in-line

and cross-flow responses for the non-lock-in case.

Another example for a near-lock-in case also showed
guadratic correlation. The cross-bicocherence spectrum
bxxy{Wl,W2) is shown in figure 5-19 and the power spectra of
cross-flow and 1in-line responses are shown in figure 5-17
and 5-18 respectively for the near-lock-in case. Peaks due

to frequency summing were all the result of quadratic
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correlation between components, as proved by the peaks 1in

the cross-bicoherence spectrum bxxy(Wl,wW2).

For the lock-in case, the cross-flow and in-line power
spectra are shown in figure 5-14 and 5-15. The
cross-bicoherence spectrum bxxy(Wl,W2) in figure 5-20 shows
a peak at Dbxxy(2.4, 2.4) which implys that the frequency
doubling property at lock-in is also due to the gquadratic

correlation between these two direction responses.

The above results of bispectral analysis provided
strong evidence of the existence of the gquadratic
correlation between cross-flow and in-line response for both
lock-in and non-lock-in cases. This implies that the
relation can be modelled by a second order nonlinear system.
The quadratic system identification techniques will Dbe

discussed in the next chapter.

The results shown so far are from the Castine
experimental data in which the incident current speed was
uniform along the cylinder. Next, the bispectral analysis
results of an Arctic experiment conducted by Vandiver and
Kim in 1983 for the shear flow case are shown to check for

quadratic correlation under the shear flow conditions.

The test cable , 975 feet 1in 1length, was suspended

vertically from a research vessel with a heavy weight at the
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bottom end. An accelerometer was located at 100 feet from
the Dbottom end of the cable: The uni-directional measured
response, was orientated at an unknown angle, contained both
in-line and cross-flow responses in it. Figure 5-21 shows
the power spectrum of the measured response in which teh
frequency summing property was observed. Again, the
cross-bicoherénce spectrum between cross-flow and in-line
components as shown in figure 5-22 indicated the existence

of guadratic correlation for the shear flow case.
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CHAPTER 6

QUADRATIC SYSTEM IDENTIFICATION AT LOCK-IN

From the bispectral analysis, we concluded that there
exists a quadratic correlation between cross-flow and
in-line response for both lock-in and non-lock-in cases.
These results also explained why the in-line response
frequencies are not corresponding to the natural frequencies
of the cylinder. However, it is still not known if even
higher order nonlinearities exist in the relationship. Due
to the 1limitation of computer memory, it is difficult to
carry out a higher than third order spectral analysis. In
the following chapters, it 1is proposed to model the
relationship between cross-£flow and in-line responses with a
second order nonlinear system which includes a linear term
and quadratic term; also an error term is introduced to
represent any error associated with the imperfection of the
model which might be due to the existence of the higher
order nonlinearities in the relationship. The linear and
guadratic systems are then identified. The resulting error
term ( or residual ) then enables us to evaluate the
contribution to the relationship, resulting from higher
order nonlinearities. Also from these identified linear and
guadratic systems, the in-line response can be dJdecomposed
into 1linear and quadratic responses due to linear and

gquadratic correlation respectively with the cross-flow
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response. In this chapter, a time domain multiple
regression method is derived to identify the 1linear and
guadratic systems for the lock-in case. The decomposed

linear and quadratic in-line responses are presented.

6.1 Application of Multiple Regression Analysis

Let the input x{(t), the cross-flow response, and output

y(t), the 1in-line response, be related by a second order
system,
k-1 M-1 M-t '
y(t)=y0+ I h(u)x(t-u)+ = r glu,v)x(t-u)x(t-v)+ n(t)
u=0 u=0 v=0

(6.1.1)

where n(t) is the error term, h(u) 1is the 1linear impulse
response function and g{(u,v) 1is the second order impulse
response kernel. Given the measured input and output data,
x(t) and y(t) t=1,2,.......,(N+K-1), the system functions
h(u) and g(u,v) are to be determined in such a way that the
estimated mean square error (MSE) is minimized. It was
further assumed without loss of generality that the second
order impulse response kernel 1is symmetrical in its

arguments:

/ \_ 7 -
g\u,V)-é(‘,W (6.1.2a)

and thus

G (W1, W2)=G(¥W2,¥1) (6.1.2b)
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Consequently, the guadratic transfer function 1is symmetric
about the 1line W1=W2 in the bi-frequency plane. Eqguation

(6.1.1) can then be rewritten in matrix form as:

{y}={yol}+[x1{n}+[z]{G}+{n} (6.1.3)
where
unknowns h(u) n=0,1,...,K-1
unknowns g(u,v) u=0,1,...,M=1 v=0,1,....,M-1
NN=N+K-1 , MM=M(M+1)/2
z(t,w)=x(t-u)x(t-v) with w=v+M*u-u(u+l)/2
G(w)=(g(u,v) 1if u=v
'{Zg(u,v) if u#v with w=v+M*u-u(u+l)/2
{h}={ h(0),h(1),......h(K-1) } ¥xl vector
{y}={ y(X),y(X+1),....y(NN) } Nxl vector
fa)={ n(K),n(K+1),....n(NX) T Nxl vector

{yo}={ yo,¥0,c¢ctvee...y0 ﬂ- Nx1l vector

{G}={G(0),G(1),....,G(MM-1) f.MMxl vector

(% (K) %(K-1) K(K=2)  eernenann 2(1)
x(K+1) x(K+2) x(K+3) ....... eeex(2)
[x]=
X(K+K=1) X(N+K=2) (et i ittt esan X(N{JNXK matrix
z(X,0) z(K,1) ...... z{(K,MM~1)
z(R+1,0) z(R+1,1) ..., z(K+1,MM-1)
[z]l={ .
z(K+N-1,0) z(K+N-1,1) ....z(XK+N=-1,MM¥-1){ NxMM matrix
- -
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the MSE can be written as

T T
msE={n} {n)}=({y}-{y0}-[x]{n}-[z}{c}) ({y}-{y0}-[x){n}-[z]{G})

T T T T T T T T T

={y} {y}-2{n} [x] {y}-2{6} [z] {y}+2{n} [x] [z]{G}+{n} [x] [x]{R}

T T T
+{G} [2] [2]{6}-{y0} ({y}-[x]{n}-[z]{G})

T T T T T

T (6.

-({y} -{n} [x] -{G} [z) ){yOo}+{yO0} {yO}

let 3 MSE/3y0 =0, we obtain
T 7 T

N*yo+{1} [x]in}+{1} [2]ic}={1} {y] (6.
let 3 MSE/ahi=0, we obtain

T T 7 7
([x] [z {e}+([x] [=D){n}+yo[x] {1}l=[x] {5} (6.
let‘a MSE/32Gi=0, we obtain

T T T T
([z] [=])in}+([2] [z {6)+y0[z] {1)=[2] {y} (6.

These three equations can be combined and rewritten as

&[Mmg (c] iQ1}z {h} {R1]
el el ezl e} | = lire} (e
5{91} {Qa] K y0 RO
{ ; L J < J
where
T

RO={I} {y}=constant

.4)

.5)

.6)

.7)
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{R1}=[x]{y}=Kxl vector
[R2}=[z]{y}=MMxl vector
{Q1}={1)[x]=1x%K .vector
(Q2}={1Y[z]=1xMM vector
[M1]=[x][x])=KxK matrix
[(M2]=[z][z]=MMxM¥ matrix

[Cl=[x][z]=KxMM matrix

For a specified order K and M, the system function h(u)
and g(u,v) can be obtained by solving the set of linear
equations (6.1.8) with x(t) and y(t) Dbeing the cross-flow
and in-line responses respectively. From these identified
system functions h(u) and g(u,v), the error n(t) can then be
calculated by equation (6.1.1) with input x(t) being the
cross-flow response. Finally we obtain the simulated
in-line response ys(t), and error n(t). Consequently, we
are now able to decompose the in-line response into the

linear response yl(t), and quadratic response vy2(t) as

follows,

n(t)=y(t)-ys(t)

vel{t)=yo+yt (t)+y2(t)

k-1
yi(t)= Z n(u)x(t-u)
u=0 (6.1.9)
M-1 M-

y2(t)=1L Z  glu,v)x(t=u)x(t-v)+y0
u=0 v=0
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6.2 Linear and Quadratic In-line Responses

In this section, typical 1lock-in response data were
analyzed by using the time domain multiple regression method
described in the last section. Figures 6-1 and 6-2 show the
input x(t) ( cross- flow ) and output y{(t) ( in-line )} for
the lock-in case. Figure 6-3 shows the scatter diagram of
x(t) wvs. y(t) which has a figure eight pattern. These two
given time series were applied to equation (6.1.1) to
calculate the system function h(t) and g(u,v) from which the
error n(t) was then obtained. By increasing the order K and
M, a convergent MSE was reached. Figure 6-4 shows the error
time series n(t) for K=30 and M=9. The error n(t) is a
wide-band noise as shown by its spectrum in Figure 6-5 and
the ratio between the MSE and the variance of in-line
response 1is 2.6%. This small amount of error implied that
the higher order nonlinearities ( higher than second order )
are negligible in the relationship for the lock-in case and
the second order nonlinear system is a reasonable model to

relate the cross-flow and in-line response.

From equation (6.1.9b), the simulated in-line response
vs(t) was obtained as shown in figure 6-6 which is in good
agreement with the real in-line response y(t). This
agreement 1s easier to visualize by comparing the scatter

diagram of cross-flow response x(t) vs. simulated in-line
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response ys(t) shown in figure 6-7 to the real one in Figure
6-3. The linear and guadratic in-line response vyl{t) and
y2(t) calculated from ‘equations (6.1.9c—9d) are shown in
figure 6-8 and 6-9. The scatter diagram of x(t) vs. yl(t)
and x(t) wvs. y2(t) in figure 6-10 and 6-11 show that the
linear 1in-line response and quadratic in-line response
contribute quite different patterns to the total in-line

response.

When the multiple regression method was applied to the
non-lock-in case, the rate of convergence was much slower
than that of lock-in case_and became inefficient. due to the
required larger order of K and M. The reason for the slower
convergence is that at lock-in, the response time series are
quite deterministic. As a result, only a 1little past
information is required to predict the present response,
while the responses at non-lock-in are much more random than
the lock-in responses which leads to the requirement of a
higher order of K and M in equation (6.1.1). The quadratic
system identification for the non-lock-in case will be

discussed in the next chapter.
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6-10 Two-Dimensional Motion Time EHistory of Cross-Flow

vs. Linear In-Line Acceleration ( Pig. 6-1 vs. 6-8 )
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CHAPTER 7

QUADRATIC SYSTEM IDENTIFICATION AT NON-LOCK-IN

In this chapter a fréquency domain least sguares method
for the quadratic system identification wili be discussed
first for the non-lock-in <case, then a quadratic model
involving a square law system proposed by Bendat and Piersol
[2] is used to identify the system. The remaining residual
after the quadratic system 1is identified is examined to
check the existence of higher order nonlinearities in the
relationship. A 1linear coherence spectrum between the
in-line response and the square of cross-flow response is
presented which  provides additional evidence of the
existence of quadratic correlation between 1in-line and

cross-flow response.

7.1 Least Squares Quadratic System Identification

A frequency domain quadratic .system identification
method with the input a stationary Gaussian random process
has been used by several other researchers. The method will
then be applied to the non-lock-in response data to obtain

the quadratic transfer function.

The input and output of a gquadratic system is expressed
¢ X Y e

as:

v(t)= Zh(w)x(t-u)+ ¢ £ glu,v)x(t-u)x(t-v)+n(t) (7.1.1)
u u v
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where n(t) denotes any error associated with the
imperfection o©f the model or noise in the system. Here, a
linear term was still included even though the in-line and
cross-flow response are almost 1linearly independent as
discussed in section 3.6 for non-lock-in case. The system
transfer functions H(W) and G(W1l,W2), are determined such
that the mean square error, MSE, of n(t) is minimized. The
MSE can be expressed as,
2 2

MSE=E[n (t)]=E{iy(t)- f h(u)x(t-u)- ﬁ Zv glu,vIx(t-u)x(t-v)]} (7.1.2)
Let [x(t),x(W)], [y(t),¥(W)], [h(u),H(W)], [g(u,v),G(W1,W2)]

be Fourier transform pairs. We find that

" |
MSE=E{[ ; K(Y(Nj)~H(NJ)X(Nj)~ LI G(Wp,Wq)X{Wp)X(Wq))exp(iKj t)]%
j=- Prq=J '

K 2
= L EOY(WI)-HIWGIX(Wj)-  2ZZ  G(Wp,Wq)X(Wp)X(Wg)1 }

J=-K ptq=J
K 2 2 2 * * *
=T g{lY(Hj)l +THIWI)T IXINGIT =HIWIX(wi)Y (W3)-H (W3)X (W3IY(Wj)
3= % * *
- £z GIWp,WQ)YIWIIX(Wp)X{Wq)+ £z  H(WJIGIKp,Hq)X(WJIX{Wp)X(kg)
p+q=J prag=l
* * * * * *
- 22 G(Wp,Wg)Y(WIIX({Wp)X{Wg)+ T2  H(Wi)G(Wp,Wq)X(Wj) X(Wp)X(¥Wg)
ptg=) pta=)
* x* *
+ L1 IL G(Wp,Wq)G(Wr,Ws)X(KWp)X(Wq)X(Wr)X(Ws)} {7.1.3)
prq=j r+s=j :

Let J¥MSE/3H(WJj) =0 , and IMSE/3G(Wm,Wn) =0 with Wm+Wn=Wj for
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all Wj. We obtain

* 2 * * * *
HIWHEDIX(WI)T J=EDXIWIVIWG)] + 2 GUIWp,WQIELX(WJIX(Wp)X(Wq)] (7.1.4)
sk

* * *
ELY(WHIX(Wm)X(Wn) J=H(WIIEIX (W3 )X (Wm)X(Wn) ]
* %* *
+II G{Wp,NQYE[X (Wp)X{Wq)X{Wm)X(Wn)J | (7.1.5)

ptg=J
From the following definitions,

Sxx(Wi)=E[ X(WiX(-¥3) ]
Sxy (W3)=E[ (W)Y (-w3) ]

. (7.1.6)
Bxxx(¥p,¥q)=E[ X(Wp)X(Wq)X(-¥p-Wq) ]

Bxxy (We,¥Wn)=E{ X(Wm)X(¥n)Y(-Wm-Wn) ]

Equations (7.1.4) and (7.1.5) can be rewritten as:

* . * * .
HIWIISxx(Wi)=Syx(Wj)+ ZI  G{Wp,Wq)Bxxx(Wp,Wq) (7.1.7)

. P+a=d
* * * *
Bxxy(Wm,Wn)=H(Wj)Bxxx{Wm,Wn)+ LI G{Wp,Wq)E[X(Wp)X(WQ)X(Wm)X(¥n)] (7.1.8)
Prasd

From these two eguations, we see that the determination
of the transfer functions H(W) and G(W1l,W2) reguired the
estimation of the fourth order spectrum, which is difficult,
due to computer storage limitations. However, if the input

x(t) is a Gaussian random process, this problem can be
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simplified considerably. If x(t) 1is a Gaussian random
process, the bispectrum Bxxx(Wm,Wn) is =zero, and we can

write the fourth order cumulant spectrum as:

* *

EIX (WYX (W)X {Wm)X{Wn) J=E[X{Wp)X(Wg) JEDX{Km}X{Kn)]

* *

. % *
+EIX(Wp)X{Wm) JEDX{WQIX(Wn) J+EDX(Wp)X(Wn)ELX(WQ)X(Wm)]

= 5(Wp+WQ) S{ Wn+Wm) SXX({ Wp) Sxx{ Wm)+8 { Wp-Wm) & (Wq-Wn)Sxx(Wm)Sxx{Wn)

+5{Wp-Wn) sl Wg-Wm) Sxx{ Wm)Sxx(Wn) (7.1.9a)

The last term in equation (7.1.8) for nonzero Wj becomes

* x

p§§=jG(w°’wq)E[X(Np)X(wq)X(wm)x(w”)J=25(wm,wn)$xx(”m)$xx(Wn) (7.1.9b)

Finally we obtain

E(W)=Sxy (¥)/Sxx(W) (7.1.10)
*
Bxxy(W1,W2)
5 (W1, %2 )= (7.1.11)

2 Sxx(wi)sSxx{(w2)

These two eguations can be used to determine the linear
and gquadratic transfer functions, and only require the
estimation of the spectra Sxx (W), Sxy(W), and
cross-bispectrum Bxxy(Wl,W2) for a Gaussian input. It was
shown in section 3.6.2 that the non-lock—in cross-flow

response can be approximated by a Gaussian random process as
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deduced from the Chi-square goodness-of-fit test of the

response Thistogram. Figure 7-1 shows the auto-bicoherence
spectrum for non-lock-in cross-flow response. This
near-zero auto-biccherence futher proved the Gaussian

assumption because the Cumulant average higher than second
order is zero for a Gaussian process as discussed in section

5.1.

Figure 7-2 shows the magnitude of the quadratic
transfer function G(W1,W2) at non-lock-in based on equation
(7.1.11) with the input cfoss-flow response a Gaussian
process as discussed in section 3.6. The spectra of in-line
and cross-flow responses are shown in figure 5-11 and 5-12.
Note that in this figure of G(W1l,wW2), all the peaks tend to
be concentrated along the 45 degree lines in the
bi-frequency plane. While G(W1l,W2) is the two-dimensional
Fourier transform of the second order impulse response
kernel g(u,v), for a general quadratic system, it should not
possess this particular property. This observation implies
that there is some certain property in this guadratic system
which might enable us to futher simplify the system in the
non-lock-in case. A special guadratic system possessing
this particular property of G(W1l,W2) has been formulated
to identify such a system transfer function by Bendat

and Piersol and will Dbe discussed in the next
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section.

7.2 Quadratic System Involving Square-Law Operators

Two models of a quadratic system involving a zero
memory sdquare-law system as pictured in Figure 7-3, have
been analyzed by Bendat and Piersol and are briefly
discussed here. The zero memory square law system is eithe;
followed or preceded by a constant parameter linear system.
These two models are called. Case 1 and Case 2 and their
properties were examined first in order to check if either
of them can be used to simplify the quadratic system for the

non-lock-in case.

The combination of the square-law system and 1linear
system gives the relations bteween x(t) and yl(t), y2(t) for

both cases as,

y1(t)=n1(2)*[x(4)] 2
=fh1(u)[x(t—u)]2 du

(7.2.1)
= //hi(u) s(u=-v)x{t-u)x(t-v) du dv
= JJgt{u,v)x(t-u)x(t-v) du dv
2
y2(t)=[h2(t)*x(t)]
=[/ h2{(u)x(t-u) du ]2
(7.2.2)

S/ h2(u)h2(v)x(t-u)x(t-v) du éav

n

S og2(u,v)x(t-u)x(t-v) du av
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where * denotes the linear convolution and g(u) is the delta
function. The second order 1impulse response kernels for

these two cases are

gt (u,v)=h1(u) ¢ (u-v) (7.2.3)

g2 (u,v)=h2(u)h2(v) (7.2.0)

The Fourier transforms of these two equations give the

guadratic transfer functions Gl(W1,W2) and G2(W1l,W2) as,

61 (W1,W2)=E1(W1+W2) (7.2.5)
G2(W1,V2)=HZ(W1)HZ(W2) (7.2.6)

The system function H1(W) and H2(W) can be obtained by

writing equation (7.2.5) and (7.2.6) as

61(¥/2,W/2)=E1 (W/2+¥/2)=E1 (%) (7.2.7)

2
G2 (w,w)=H2(W) | (7.2.8)

By using equation (7.1.11) of the 1least square gquadratic

system identification result with Gaussian input, finally we

obtain
. Bxxyl(W/2,W/2) Bxyl{W/2)
HIUW)=G1(W/2,W/2)= " = - (7.2.9)
2Sxx(W/2) 25Xx(W/2)
Bxxy2(W,W) Bxy2 (W
HZ (W)=SQRTLGZ(W,W) J={[ Y l = etw) }

2SXX( W) 2% x( W) (7.2.10)
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In which Bxy(W) is the special bispectral density function

defined by
Bxy (W) =Exxy (¥, ¥)=E[X ()2 ()Y (2w)] (7.2.11)

Equations (7.2.9) and (7.2.10) were derived from the
least square error point of view and they are identical to

the results formulated by Bendat.

The linear transfer function H(W) derived by Bendat is

also identical to the results of section 7.1 which is
'B(w)=Sxy(W)/Sxx(W) (7.2.12)

Checking the properties of the quadratic transfer
functions in equations (7.2.5) and (7.2.6) permits one to
determine whether or not the Case 1 model or the Case 2
model 1is more appropriate to fit to the non-lock-in data.
According to equation (7.2.5) for Case 1, | any peak
associatéd with the function HL(W) will shown up along a
45-degree line in the bi-fregquency plane of G1(W1l,wW2) which
is similar to the result stated in section 7.1, while Case 2
does not possess this property. It is then proposed to try
the Case 1 model on the non-lock-in responses data. The
goodness of the Case 1 model can then be checked from the

residual n(t).
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The data presented in section 7.1 for non-lock-in case
were analyzed again by using the Case 1 model and the
resulting system functions H(W) and H1(W) according to
equations (7.2.12) and (7.2.9) are shown in figure 7-4 and
7-5. From these identified system functions H(W) and H1l(W),
the spectrums of residual n(t), the linear and gquadratic
responses v{(t) and yl(t), as well as the simulated in-line

response ys(t) were obtained according to,

2
svv(W)=Sxx(¥) I B(W) I (7.2.13)
X 2
Syiyt (¥)=sziz1(w) I B1(¥) I (7.2.14)
Sysys(W)=va(W)+Sy1y1(W) : (7.2.15)

Sn (¥)=Syy (¥)-Sysys (W) (7.2.16)

A small residual spectrum Snn(W) compared to the
in-line response spectrum was obtained as shown in Figure
7-6 which showed the goodness of fit of the Case 1 model to
the data. This also meant that the existence of higher
order nonlinearities was negligible in the relationship at
the case. The spectrum of simulated in-line response‘
Sysys(W) as shown in Figure 7-7 was in good agreement with
in-line response spectrum Syy(W) shown in Figure 5-11. The
- spectrum Sysys(W) is almost entirely contributed by the
guadratic in-line response because the obtained 1linear

in-line response spectrum Svv(W) was very small and was not
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shown here. This result is quite different from that of the
lock-in case. It should be emphasized here that
theoretically, the fractions of power associated with
in-line response due to linear and quadratic correlations
could be estimated by examining the linear and quadratic
coherence spectrums [16] and [17]. However, due to the
slight change of tidal current speed over the data recording
period, the cylinder reponses were not perfectly stationary
which affected the accuracy of the <cross-bicoherence
spectrum estimations. As a result, the cross-bicoherence
spectra provided only gqualitive, rather than quantitative

answers to the nonlinear problem in this research work.

Finally, it is interesting to examine the
characteristic of the square of cross-flow response, that is
the output zl(t) from the square-law system in the Case 1
model. Figure 7-8 shows the spectrum of zl(t), Szlzl(wW), in
which the two dominant peaks were located in the fregquencies
exactly equal to thaé of the 1in-line response spectrum
Syy(W) shown in Figure 5-11. Figure 7-9 is another example
of the spectrum of the sguare of cross-flow response fo; the
near-lock-in case. Comparing to figure 5-18, the two
dominant peaks also located at the same fregquecies. Figure
7-10 shows the linear coherence spectrum between zl(t) and

v(t)  which demonstrated that these two fluctuating
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guantities were highly linearly coherent as shown by the
high peaks in the two dominant frequencies. Once more, this
result provided the evidence of the existence of quadratic

correlation between cross-flow and in-line responses.
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CHAPTER 8

CONCLUSIONS

A field experiment has been conducted to investigate
the vibration characteristics of both in-line and cross-flow
responses o0f a long flexible cylinder subjected to
vortex-induced excitation. Tests were successfully
conducted under more realistic conditions than laboratory
ones with cylinder length to diameter ratios of
approximately 750 and Reynolds numbers up to 22000. Both
lock~-in and non-lock-in cases were analyzed with particular
emphasis on tﬁe investigation of the relationship between
in-line and cross-flow responses. For the first time

convincing evidence was obtained on the existence of a

guadratic relationship. Several time series analysis
methods. were carefully described including double
integration, modal analysis, bispectral analysis and

gquadratic system identification. The results of this study

suggest the following conclusions:

1. In-line and cross-flow responses are not independent for
either 1lock-in or non-lock-in cases. From the modal
analysis, the total vibration energies in these two
directions were highly related to each other. Higher
order spectral analysis was then performed in order to

investigate the possibility of a nonlinear relationship.
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The results of bispectral analysis indicated that
responses in these two berpendicular directions were

guadratically correlated to each other.

In-line response modes were not always excited at their
natural frequencies. 1Instead, the response frequencies
in the 1in-line direction were equal to double or the sum
of that in the cross-flow direction. With the finding
of the guadratic correlation, such frequency doubling and
summing phenomena as well as the in-line non-natural

response frequencies then could be explained.

Nonlinear correlations higher than seéond order were
negligible in the nonlinear relationship for both lock-in
and non-lock-in cases. A second order system was used to
model this relationship with a residual or error term
representing any imperfection (eg. noise or higher order
nonlinearities) associated with this model. Very small

residual terms were obtained from the quadratic system

identification.
For the non-lock-in <case, the in-line and cross-flow
responses are linearly independent. This was shown by

the 1linear coherence spectrum and by the dJdecomposed

linear contributing term in the modeled second order
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system.

Wake oscillator models have been proposed by others to
model the vibration in both in-line and cross-flow
directions [9]. The conclusions from this thesis suggest
that the wake oscillatbr models in the two directions
should be coupled to each other by imposing the condition
that in-line and cross-flow responses are correlated

quadratically.
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